New algorithm finds phony users on social networks
The new method is based on the assumption that fake accounts tend to establish improbable links.
By JUDY SIEGEL-ITZKOVICH
A generic method to detect fake accounts on most types of social networks, including Facebook and Twitter, has been developed by researchers at Ben-Gurion University of the Negev and the University of Washington.According to a study just published in Social Network Analysis and Mining, the new method is based on the assumption that fake accounts tend to establish improbable links to other users in the networks.“With recent disturbing news about failures to safeguard user privacy and targeted use of social media by Russia to influence elections, rooting out fake users has never been of greater importance,” said Dima Kagan, lead researcher and a PhD student in BGU’s software and information systems engineering department. “We tested our algorithm on simulated and real-world data sets on 10 different social networks, and it performed well on both.”The algorithm consists of two main iterations (repetitions) based on machine-learning algorithms. The first constructs a link prediction classifier that can estimate, with high accuracy, the probability of a link existing between two users. The second iteration generates a new set of meta-features based on the features created by the link prediction classifier. Lastly, the researchers used these meta-features and constructed a generic classifier that can detect fake profiles in a variety of online social networks.“Overall, the results demonstrated that in a real-life friendship scenario, we can detect people who have the strongest friendship ties as well as malicious users, even on Twitter,” the researchers said. “Our method outperforms other anomaly detection methods, and we believe that it has considerable potential for a wide range of applications, particularly in the cybersecurity arena.”The BGU researchers previously developed the Social Privacy Protector to help users evaluate their friends list in seconds to identify which have few or no mutual links and might be fake profiles.